

คู่มือปฏิบัติงาน

เรื่อง วิธีใช้งานเครื่องกลั่นปริมาณในโตรเจน (Kjeldahl Nitrogen Analyzer) เครื่องย่อยตัวอย่างสาร (Digester) และเครื่องดักจับไอกรด (Scrubber) อย่างง่าย

> จัดทำโดย นางสาวฤทัยทิพ อโนมุณี

คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏสงขลา คู่มือปฏิบัติงานเล่มนี้เป็นเอกสารแสดงวิธีการใช้เครื่องวิเคราะห์หาปริมาณไนโตรเจน
 (Kjeldahl Nitrogen Analyzer) อย่างง่าย สำหรับการวิเคราะห์หาปริมาณไนโตรเจน/โปรตีนใน
 ตัวอย่าง โดยระบุกระบวนการและขั้นตอนการกลั่นด้วยเครื่องกลั่น ขั้นตอนการย่อยด้วยเครื่องย่อย
 และขั้นตอนการใช้เครื่องดักจับไอกรด เนื่องจากในการวิเคราะห์หาปริมาณไนโตรเจน/โปรตีนนั้น ต้อง
 ใช้เครื่องมือเหล่านี้ประกอบกัน ดังนั้นคู่มือปฏิบัติงานมีความสำคัญอย่างยิ่งในการปฏิบัติงาน เพื่อช่วย
 ให้หน่วยงานมีคู่มือไว้ใช้ในการปฏิบัติงานและช่วยให้ผู้ปฏิบัติงาน ได้แก่ นักศึกษา อาจารย์ และ
 ผู้ที่เกี่ยวข้อง สามารถศึกษาวิธีการใช้งานได้อย่างรวดเร็วและมีประสิทธิภาพจากคู่มือปฏิบัติงานเล่มนี้
 วัตถุประสงค์ของการจัดทำคู่มือวิธีการใช้เครื่องกลั่นปริมาณไนโตรเจน (Kjeldahl
 Nitrogen Analyzer) เครื่องย่อยตัวอย่างสาร (Digester) และเครื่องดักจับไอกรด (Scrubber)
 อย่างง่าย จะสรุปสรุปวิธี/ขั้นตอน รวมทั้งการเข้าถึงวิธีใช้งานเครื่องมือ ไว้ในรูปแบบ QR Code และ

ติดไว้บริเวณเครื่องฯ ทั้งนี้เพื่อความสะดวก รวดเร็วในการค้นหาและการใช้ งานเครื่องมือ เป็นการลด การใช้กระดาษ และพัฒนาห้องปฏิบัติการและพัฒนาศักยภาพการทำงานในหน่วยงาน

สารบัญ

ข

คำนำ		ก
สารบัญ	Ų	ข
สารบัญ	บูตาราง	٩
สารบัญ	บูภาพประกอบ	จ
y J		4
ขนตยา	นการบฏิบติสาน	1
แผนผง	มการบฏบตงาน *	1
1.	ขั้นตอนการเข้าถิ่งวิธีการใช้เครื่องมือ	2
2.	วิธีการใช้งานเครื่อง	2
	2.1 รายละเอียดเครื่องมือ	2
	2.2 องค์ประกอบของเครื่องมือสำหรับวิเคราะห์ปริมาณไนโตรเจน	4
	2.3 วัสดุ/สารเคมีที่ใช้	4
	2.4 แผนผังการวิเคราะห์	5
3.	เครื่องกลั่น	5
	3.1 ส่วนประกอบการทำงานของเครื่องกลั่น	6
	3.2 การตั้งโปรแกรม	8
	3.3 การเตรียมความพร้อมก่อนใช้งานเครื่อง	10
	3.4 การตั้งค่าการทดสอบ	10
	3.5 ขั้นตอนการกลั่นตัวอย่าง	12
	3.6 ขั้นตอนการทำความสะอาดเครื่องกลั่น	12
4.	เครื่องดักจับไอกรด	13
	4.1 ส่วนประกอบของเครื่องดักจับไอกรด	13
	4.2 ขั้นตอนการเตรียมเครื่องดักจับไอกรด	13
5.	เครื่องย่อยตัวอย่างสาร	14
	5.1 ส่วนประกอบของเครื่องย่อยตัวอย่างสาร	14
	5.2 ขั้นตอนการเตรียมเครื่องย่อยตัวอย่างสาร	15

สารบัญ(ต่อ)

5.3	3 ขั้นตอนการทำความสะอาดเครื่องย่อยตั้งอย่างสารตั้งโปรแกรม	19
6. กา	ารดูแลรักษาเครื่องมือ	19
ประวัติผู้เขีย	ยน	21

สารบัญตาราง

ตารางท์		หน้า
1	รายละเอียดเครื่องมือ	2

สารบัญภาพประกอบ

ภาพที่		หน้า
1 2	เครื่องเครื่องกลั่นปริมาณไนโตรเจน เครื่องย่อยตัวอย่างสาร และเครื่องดักจับไอกรด องค์ประกอบเครื่องกลั่นปริมาณไนโตรเจน เครื่องย่อยตัวอย่างสาร	2
	และเครื่องดักจับไอกรด	4
3	ส่วนประกอบการทำงานของเครื่องกลั่น	6
4	ส่วนประกอบภายในของเครื่องกลั่น	6
5	หลักการทำงาน	7
6	แถบเมนูหลักต่างๆ บน interface	8
7	แถบเมนูหลักต่างๆ บน interface ข้อ 1-4	8
8	การตั้งค่าบนหน้าจอ Interface Pro ข้อ 5-7	9
9	การตั้งวิเคราะห์ single determination	11
10	การตั้งค่าวิเคราะห์ series determination	11
11	ขั้นตอนการกลั่นตัวอย่าง	12
12	ส่วนประกอบของเครื่องดักจับไอกรด	13
13	ขั้นตอนการเตรียมเครื่องดักจับไอกรด	14
14	ส่วนประกอบของเครื่องย่อยตัวอย่าง	14
15	ขั้นตอนการเตรียมเครื่องย่อย	15
16	ขั้นตอนการย่อยตัวอย่าง	16
17	หน้าจอการทำงานของเครื่องย่อย	16
18	หน้าจอการตั้งค่าขั้นตอนการตั้งค่า	18
19	การทำความสะอาดถาดรอง	19
20	การเช็คอะไหล่ และข้อต่อต่างๆ	20

ขั้นตอนการปฏิบัติงาน

หลักสูตรวิทยาศาสตรบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์และเทคโนโลยี ปฏิบัติหน้าที่ ตามพันธกิจของคณะวิทยาศาสตร์และเทคโนโลยี มุ่งเน้นด้านการจัดการศึกษาเพื่อผลิตบัณฑิตและ พัฒนาบุคลากรด้านวิทยาศาสตร์และเทคโนโลยี ส่งเสริมการผลิตและพัฒนาครูด้านวิทยาศาสตร์ ศึกษาวิจัย สร้างองค์ความรู้พัฒนาวิทยาศาสตร์และเทคโนโลยี

หลักสูตรวิทยาศาสตรบัณฑิต สาวิชาเคมี มีเครื่องกลั่นปริมาณไนโตรเจน เครื่องย่อย ตัวอย่างสารเครื่องดักจับไอกรด เพื่อสนับการเรียนการสอนในรายวิชาปฏิบัติการ งานวิจัย และงาน อื่นๆ ที่เกี่ยวข้อง โดยมีผู้ใช้บริการจำนวนมาก ได้แก่ นักศึกษา อาจารย์ เจ้าหน้าที่ ภายใน มหาวิทยาลัยและหน่วยงานภายนอกที่เข้ารับบริการ ดังนั้นจึงสรุปสรุปวิธี/ขั้นตอน รวมทั้งการเข้าถึง วิธีใช้งานเครื่องมือ ซึ่งประกอบด้วยขั้นตอนเครื่องกลั่นปริมาณไนโตรเจน เครื่องย่อยตัวอย่างสาร เครื่องดักจับไอกรด ไว้ในรูปแบบ QR Code และติดไว้บริเวณเครื่องๆ ทั้งนี้เพื่อความสะดวก รวดเร็ว ในการค้นหาและการใช้งานเครื่องมือ เป็นการลดการใช้กระดาษ และพัฒนาห้องปฏิบัติการและ พัฒนาศักยภาพการทำงานในหน่วยงาน

แผนผังการการปฏิบัติงาน

1. ขั้นตอนการเข้าถึงวิธีการใช้เครื่องมือ

นักศึกษาหรือผู้ใช้บริการใช้โทรศัพท์มือถือสแกน QR CODE คู่มือการใช้งานเครื่องที่ติดไว้ บริเวณเครื่องมือนั้นหรือสามารถศึกษาเอกสารคู่มือการใช้อย่างง่ายประจำเครื่องมือ

QR code เครื่องกลั่นปริมาณในโตรเจน

2. วิธีการใช้งานเครื่อง

ตารางที่ 1 รายละเอียดเครื่องมือ

ชื่อภาษาไทย	เครื่องกลั่นปริมาณไนโตรเจน	เครื่องย่อยตัวอย่างสาร	เครื่องดักจับไอกรด
ชื่อภาษาอังกฤษ	Kjeldahl Nitrogen	Digester	Scrubber
	Analyzer		
หมายเลขครุภัณฑ์	65-11-150000-212-00657-0001	65-11-150000-212-00659-0001	65-11-150000-212-00658-
			0001
วันที่รับ	8 กันยายน 2565	8 กันยายน 2565	8 กันยายน 2565
ยี่ห้อ	Buchi	Buchi	Buchi
รุ่น	Multikjel	KjelDigester K-449	Scrubber K-415
สถานะ	ใช้งานได้		
สถานที่ตั้ง	ห้องเครื่องมือ3 (73-623)		
ผู้ดูแล	นางสาวฤทัยทิพ อโนมุณี และ นายหาสันต์ สาเหล็ม		

ภาพที่ 1 เครื่องกลั่นปริมาณในโตรเจน เครื่องย่อยตัวอย่างสารและเครื่องดักจับไอกรด

หลักการ

เครื่องกลั่น (Kjel Line) เป็นเครื่องที่เหมาะสมในการทดสอบตามวิธี Kjeldahl method ในการวิเคราะห์หาโปรตีน, Total Kjeldahl Nitrogen (TKN), Total Volatile Basic Nitrogen (TVBN) และวิธี Devarda (inorganic nitrogen) ซึ่งเหมาะสมในการทดสอบหาไนโตรเจน

Kjeldahl method การย่อยสลายโปรตีน ซึ่งประกอบด้วยกรดแอมิโน (amino acid) ที่มี ในโตรเจนเป็นส่วนประกอบใน amino group การย่อยสลายโปรตีน จะปลดปล่อยไนโตรเจนออกมา และถูกเปลี่ยนให้เป็นแอมโมเนีย

การวิเคราะห์หาโปรตีนด้วยวิธี Kjeldahl ประกอบด้วย 4 ขั้นตอนหลักคือ

 การย่อยตัวอย่าง (digestion) ด้วยกรดซัลฟูริกเข้มข้น ในโตรเจนในตัวอย่างจะ เปลี่ยนเป็นแอมโมเนียมซัลเฟต (NH₄)₂SO₄ ภายใต้สภาวะอุณหภูมิสูงโดยมีสารเร่งปฏิกิริยา เช่น CuSO₄, Se, HgSO₄, HgO หรือ FeSO₄

 การกลั่นแอมโมเนีย (distillation) โดยใช้โซเดียมไฮดรอกไซด์ มาทำปฏิกิริยากับ เกลือแอมโมเนียมซัลเฟตที่ได้จากการย่อยตัวอย่างแล้ว จะได้ก๊าซแอมโมเนีย ซึ่งจับก๊าซนี้ได้ด้วย สารละลายบอริก

3. การไทเทรตพื่อหาปริมาณไนโตรเจน (titration) เป็นการนำสารละลายกรดบอริก ซึ่งจับก๊าซแอมโมเนียไว้ มาไทเทรตกับสารละลายมาตรฐานกรดซัลฟูริก

4. การคำนวณ นำปริมาณสารละลายมาตรฐานกรดซัลฟูริค ที่ใช้ในการไทเทรตไป คำนวณหาปริมาณไนโตรเจน แล้วคูณกับ Kjeldahl factor ซึ่งค่าเฉลี่ยของไนโตรเจนในโปรตีนอยู่ที่ ร้อยละ 16 ได้เป็นค่าปริมาณโปรตีนหยาบ (crude protein)

องค์ประกอบของเครื่องมือสำหรับวิเคราะห์ปริมาณไนโตรเจน

- 1. เครื่องกลั่น Kjel Line (Multikjel)
- 2. เครื่องย่อยตัวอย่างสาร (KjelDigester K-449)
- 3. เครื่องดักจับไอกรด (Scrubber K-415)
- 4. เครื่องควบคุมความเย็น (Cooling CTL 9)
- 5. ภาชนะบรรจุสารละลายโซเดียมไฮดรอกไซด์ (NaOH), น้ำกลั่น (H₂O) และสารละลาย กรดบอริก (Boric acid)
- 6. ภาชนะบรรจุของเสีย
- 7. แผงควบคุมเครื่องมือ

ภาพที่ 2 องค์ประกอบเครื่องกลั่นปริมาณในโตรเจน เครื่องย่อยตัวอย่างสารและเครื่องดักจับไอกรด

วัสดุ/สารเคมีที่ใช้

- 1. หลอดกลั่น สำหรับใส่ตัวอย่าง ตัวเร่งปฏิกิริยา และกรดซัลฟิวริกเข้มข้น
- 2. ขวดรูปชมพู่ (ภาชนะรับจากการกลั่น)
- 3. ที่จับหลอดกลั่น
- 4. ปากคีบ
- 5. ชาโคร์
- 6. สารละลายโซเดียมไฮดรอกไซด์ 10% + โบรโมไทมอลบลู (สารละลายเป็นสีน้ำเงิน)
- 7. สารละลายกรดบอริก และอินดิเคเตอร์ ดูในวิธีการทดสอบ

- 8. สารละลายโซเดียมไฮดรอกไซด์ 30-40% ดูในวิธีการทดสอบ
- 9. ตัวเร่งปฏิกิริยา ดูในวิธีการทดสอบ
- 10. กรดซัลฟิวริกเข้มข้น ดูในวิธีการทดสอบ
- 11. น้ำกลั่น

แผนผังการวิเคราะห์

3. เครื่องกลั่น

1. ส่วนประกอบการทำงานของเครื่องกลั่น

- 1.1 แผงควบคุมเครื่องมือ (1)
- 1.2 เครื่องควบคุมความเย็น (2)
- 1.3 ภาชนะบรรจุสารละลายโซเดียมไฮดรอกไซด์ (NaOH), น้ำกลั่น (H2O) และสารละลาย กรดบอริก (Boric acid) (3)
- 1.4 ภาชนะบรรจุของเสีย (4)
- 1.5 เครื่องกลั่น (5)

ภาพที่ 3 ส่วนประกอบการทำงานของเครื่องกลั่น

2. ส่วนประกอบภายในเครื่องกลั่น

- 2.1 อุปกรณ์ป้องกันการกระเด็น (Splash protector) (1)
- 2.2 Handle ล็อคหลอดกลั่น (2)
- 2.3 หลอดกลั่น (distillation tube) (3)
- 2.4 คอนเดนเซอร์ (condenser) (4)
- 2.5 หน้าจอควบคุมการทำงาน (Interface) (5)
- 2.6 ภาชนะรับจากการกลั่น (Receiving flask / vessel) (6)

ภาพที่ 4 ส่วนประกอบภายในของเครื่องกลั่น

3. หลักการทำงาน

- 3.1 Steam Generator (3) มีการผลิตไอน้ำเข้ามาสู่หลอดย่อย (1) ด้านซ้ายมือ
- 3.2 ไอน้ำเข้าสู่สารละลายตัวอย่าง (หลอดกลั่น/หลอดย่อย) นำพาสารประกอบที่ระเหยได้ (เช่น แอมโมเนีย เป็นต้น)
- ส่วนที่ระเหยได้ จะถูกควบแน่นในคอนเดนเซอร์ ส่วนที่ควบแน่นจะถูกรวบรวมใน สารละลายตัวรับฝั่ง รองรับตัวอย่างด้านขวามือ

แสดงดังภาพที่ 5

4. ชุดควบคุมการทำงาน Interface

แถบเมนูหลักต่างๆ บน interface แสดงดังภาพที่ 6

- 1. แถบเมนูต่างๆ เพื่อเข้าสู่หน้าเมนูนั้นๆ (1)
- 2. หน้าจอแสดงผล (3)
- 3. แถบฟังก์ชัน แสดงฟังก์ชันที่สามารถใช้งานได้ ณ การเข้าสู่โหมดต่างๆ (2)
- 4. ปุ่มยืนยันตั้งค่าการทำงาน (4)
- 5. ปุ่มหยุดการทำงาน (5)
- 6. (knob) สำหรับเลือก/ เลื่อนไปยังตำแหน่งค่าที่ต้องการ (6)

ภาพที่ 6 แถบเมนูหลักต่างๆ บน interface

5. การตั้งโปรแกรม

ตั้งค่าโปรแกรมตามวิธีการทดสอบ

5.1 ไปที่หน้าฟังก์ชั่น Process menu (1)

5.2 เลือก Methods (2) --> copy Methods (3) เพื่อสร้างโปรแกรมใหม่

5.3 ทำการตั้งชื่อโปรแกรม --> กด Save (4)

5.4 ระบุปริมาตรของสารละลายต่างๆ (5) ตามวิธีการทดสอบ

5.5 กดปุ่ม knob เพื่อยืนยันการตั้งค่า (6)

5.6 กดเลือก เมนู Home (7) เพื่อเข้าสู่โหมดปัจจุบัน

ภาพที่ 7 แถบเมนูหลักต่างๆ บน interface ข้อ 1-4

ภาพที่ 8 การตั้งค่าบนหน้าจอ Interface Pro ข้อ 5-7

รายละเอียดที่แสดงบนหน้าจอ Interface

- ตั้งชื่อโปรแกรม
- Reaction Detection : ON / OFF
- ตั้งค่าปริมาตรสาระลาย ที่เติมในหลอดกลั่น
- steam steps : ตั้ง % แรงดันไอน้ำกับเวลา สามารถตั้งสูงสุดได้ 3 step
 - Non : ไม่ตั้ง step แรงดันไอน้ำ
 - 2 : ตั้ง 2 step แต่ละ step สามารถกำหนด % แรงดันไอน้ำได้ และ
 เวลา (วินาที) แต่ละ step ได้
 - 3 : ตั้ง 3 step แต่ละ step สามารถกำหนด% แรงดันไอน้ำได้ และ
 เวลา (วินาที) แต่ละ step ได้
- Level Detection : ON/OFF
- ตั้งเวลาการกลั่น
- ตั้งค่าปริมาตรสารละลาย H₃BO₃
- การดูดสารตัวอย่างออก (Sample tube aspiration)

6. การเตรียมความพร้อมก่อนใช้งานเครื่อง

- 1. เปิดเครื่องทำความเย็น และรออุณหภูมิเย็น 10 องศาเซลเซียส
- บรรจุสารละลายโซเดียมไฮดรอกไซด์ (NaOH), น้ำกลั่น (H₂O) และสารละลาย กรดบอริก (Boric acid) ในภาชนะบรรจุ
- 3. ตรวจสอบข้อต่ออื่น ๆ ที่ต่อกับเครื่องกลั่นให้แน่นสนิท
- 4. การเตรียมความพร้อมเครื่อง ก่อนการใช้งานเครื่องกลั่น

Manual control menu

 4.1 Preheating การทำให้เครื่องแก้วทุกส่วนของเครื่องกลั่นร้อน (heating) ก่อนการ ทำงาน สามรถทำ preheating ทุกครั้งก่อนการใช้งาน หรือไม่ก็ได้ เนื่องจากเครื่องมี ฟังค์ชั่นการกลั่นอัตโนมัติ

 4.2 Priming method เป็นการเตรียมความพร้อม เหมือนการกลั่นตัวอย่างจริง แนะนำ ให้ตั้งโปรแกรมเหมือนกับโปรแกรมที่ใช้งานจริงกับตัวอย่าง

4.3 Cleaning (การทำความสะอาดเครื่อง) สามารถทำก่อนใช้งาน และเมื่อทำงานเสร็จ ในแต่ละวัน ควรมีการล้าง splash protector และ condenser ด้วยน้ำ เพื่อกำจัด โซเดียมไฮดรอกไซด์ออก

4.4 Aspiration (การดูดสารออก) เป็นการสั่งงาน ให้ดูดสารละลายออกจากตัวอย่างในหลอดย่อย

7. การตั้งค่าการทดสอบ

สามารถตั้งการทำงานได้ 2 แบบ ได้แก่

- single determination : วิเคราะห์ตัวอย่างไม่มาก

- series determination : วิเคราะห์ตัวอย่างจำนวนมากต่อเนื่องกัน
- 7.1 Single determination : เป็นการทดสอบครั้งละตัวอย่าง
 - ชื่อตัวอย่าง
 - Blank/Reference/Sample
 - เลือกโปรแกรม
 - น้ำหนักตัวอย่างหรือไม่กรอกข้อมูลก็ได้
 - คลิก Start เริ่มกลั่น จะแสดงหน้าจอดังภาพที่ 9

ภาพที่ 9 การตั้งวิเคราะห์ single determination

7.2 series determination : วิเคราะห์ตัวอย่างจำนวนมากต่อเนื่องกัน โปรแกรมกลั่นแบบเดียวกัน

- ใส่ข้อมูลตัวอย่าง
- ชื่อตัวอย่าง
- Blank/Reference/Sample
- เลือกโปรแกรม
- น้ำหนักตัวอย่างหรือไม่กรอกข้อมูลก็ได้
- คลิก Start เริ่มกลั่น ทีละตัวอย่าง จะแสดงหน้าจอดังภาพที่ 10

6 🖑	1	6 🖑 🗹	¢ې ۱
Series Name	Batch A	Operation Mode	Series
Determinations		Series	Batch A
	Standard Method	Next Determination	S 2 >
Blank 1	Blank >	Method	Standard Method
Blank 2	Standard Method Blank	Running Determination	>
S 1	Program A Sample	Distilling	
S 2	Standard Method Sample	- Remaining Time	2345
S 3	Standard Method Sample		

ภาพที่ 10 การตั้งค่าวิเคราะห์ series determination

8. ขั้นตอนการกลั่นตัวอย่าง

ดังภาพที่ 11

- 1. ดึง Handle ขึ้น -> ใช้ที่จับหลอดนำหลอดกลั่นวางในแนวตรง ให้ตรงตำแหน่ง วางหลอดกลั่น
- 2. ล็อคหลอดกลั่น --> ดึง Handle ลง
- 3. นำภาชนะรับจากการกลั่น (Receiving flask / vessel) อาจจะบรรจุสารละลายกรดบอริก
- 4. กดปุ่ม Start
- 5. เมื่อเสร็จสิ้นกระบวนการกลั่น จะมีเสียงเตือน และหน้าจอแสดง Process finished --> กดปุ่ม OK
- 6. นำหลอดกลั่นออก โดยใช้ที่จับหลอดจับบริเวณหลอดกลั่น (ระวังร้อน)
- ดึง Handle ขึ้น -->ใช้ forcept หนีบสายยาง ป้องการการเด็นของตัวอย่าง (ทำอย่าง ระมัดระวัง) --> นำสารละลายที่กลั่นได้ไปไทเทรตเพื่อหาปริมาณไนโตรเจนต่อไป
- 8. นำตัวอย่างถัดไปเข้าเครื่องกลั่น ทำเหมือนข้อ 1-7 จนเสร็จสิ้นการทดลอง
- 9. เมื่อทำการทดลองเสร็จให้ทำความสะอาดเครื่อง --> ถาดรอง ทุกครั้งหลังใช้งานเสร็จ
- 10. ลงบันทึกการใช้เครื่องมือทุกครั้ง

ภาพที่ 11 ขั้นตอนการกลั่นตัวอย่าง

9. ขั้นตอนการทำความสะอาดเครื่องกลั่น

เมื่อทำงานเสร็จในแต่ละวัน ควรมีการล้าง splash protector ด้วยน้ำเพื่อกำจัดโซเดียมไฮดรอกไซด์ โดย

- --> นำหลอดกลั่น (ไม่มีตัวอย่าง) วางในแนวตรง ให้ตรงตำแหน่งวางหลอดกลั่น ทำเหมือนข้อ 2-3
- -> เลือกโปรแกรม CLEANING เติมน้ำ 300 ml กลั่น 5 นาที (ทำอย่างน้อย 2 รอบ)
- -->กดปุ่ม Start

4. เครื่องดักจับไอกรด

1. ส่วนประกอบของเครื่องดักจับไอกรด

ภาพที่ 12 ส่วนประกอบของเครื่องดักจับไอกรด

2. ขั้นตอนการเตรียมเครื่องดักจับไอกรด

- 2.1 เตรียม 10 %โซเดียมไฮดรอกไซด์ผสมกับโบรโมไทมอลบลู สารละลายสีน้ำเงิน อย่างน้อย 2 ลิตร ควรเตรียมใหม่เมื่อสารละลายเปลี่ยนเป็นสีเหลืองหรือใส
- 2.2 บรรจุชาโคร์ สำหรับดูดซับกลิ่น
- 2.3 ต่อขวดรองรับเข้ากับคอนเดนเซอร์และยึดด้วยตัวหนีบ
- 2.4 ตรวจสอบข้อต่อต่างๆ และยึดให้แน่น
- 2.5 ตรวจสอบสายหล่อเย็นออกจากคอนเดนเซอร์
- 2.6 ตรวจสอบสายหล่อเย็นเข้ามาในคอนเดนเซอร์
- 2.7 ตรวจสอบสายต่อไปยางขวดรองรับ
- 2.8 ตรวจสอบสายต่อจากเครื่องย่อย
- 2.9 จัดอุปกรณ์ดังภาพที่ 13 จากนั้นเสียบปลั๊ก
- 2.10 เปิดสวิตซ์ควบคุมเครื่อง
- 2.11 เปิดเครื่องทำความเย็น โดกดสวิตซ์ Cool และ PUMP แสดงไฟสีแดง และหน้าจอแสดงอุณหภูมิ รอจนกระทั่งอุณหภูมิ 10 องศาเซลเซียส

ภาพที่ 13 ขั้นตอนการเตรียมเครื่องดักจับไอกรด

- 5. เครื่องย่อยตัวอย่างสาร
 - 1. ส่วนประกอบของเครื่องย่อยตัวอย่าง

ภาพที่ 14 ส่วนประกอบของเครื่องย่อยตัวอย่าง

2. ขั้นตอนการเตรียมเครื่องย่อยตัวอย่าง

2.1 เสียบปลั๊กเครื่องย่อย และล็อคข้อต่อของท่อดูดไอกรดให้แน่นสนิท (1)

2.2 ตรวจสอบข้อต่ออื่น ๆ ที่ต่อกับเครื่องดักจับไอกรดให้แน่นสนิท (1)

ภาพที่ 15 ขั้นตอนการเตรียมเครื่องย่อย

3. ขั้นตอนการย่อยตัวอย่าง

- 3.1 นำหลอดกลั่นในโตรเจนที่ใส่ตัวอย่าง ตัวเร่งปฏิกิริยา และกรดซัลฟิวริกเข้มข้น วางใน Rack และแขวนบนที่แขวน Rack (1)
- 3.2 นำถาดรองออก
- 3.3 ใช้มือจับบริเวณที่จับทั้ง 2 ข้างของฝาครอบ ปิดฝาครอบให้แนบสนิทกัน (2)
- 3.4 เปิดเครื่องย่อย (3) โดยกดสวิตซ์สีเขียว แสดงไฟสีเขียว หน้าจอแสดง ดังภาพที่ 16
- 3.5 กดปุ่ม 💌 เพื่อเลื่อนลิฟต์ลง (4)
- 3.6 เปิดเครื่องดักจับไอกรดที่เตรียมไว้ โดยกดปุ่ม สวิตซ์ด้านข้างของเครื่อง

ภาพที่ 16 ขั้นตอนการย่อยตัวอย่าง

หมายเหตุ

ควรวางหลอดกลั่นให้ครบทุกหลุม กรณีหลอดที่ไม่ตัวอย่างให้เติมกรดซัลฟิวริกเข้มข้น จำนวน 20 มิลลิลิตร

3.7 หน้าจอการทำงานของเครื่อง

ภาพที่ 17 หน้าจอการทำงานของเครื่องย่อย

- Display: หน้าจอแสดงข้อมูลต่างๆ เช่น อุณหภูมิที่ตั้งไว้และอุณหภูมิ ณ ขณะนั้น ระยะเวลาการย่อย (1)
- LED heating block ON/OFF: ON = มีการเพิ่มอุณหภูมิขึ้น, OFF = ปิดเครื่องและ อุณหภูมิต่ำกว่า 60 °C (2)
- 3. LED heating block flashing: ไม่ได้มีการเพิ่มอุณหภูมิ และเครื่องย่อยมีอุณหภูมิสูงกว่า 60 $^{\circ}\mathrm{C}$ (3)
- 4. Start: เริ่มกระบวนการย่อย (4)
- 5. Stop: หยุดกระบวนการย่อย, หยุดการทำงานของเครื่องดักจับไอกรด (6)
- 6. Temperature: ช่วง 30 450 C ใช้ในการปรับอุณหภูมิของบล็อกให้ความร้อน (6)
- 7. Method : ช่วง 0-9 โปรแกรม แต่ละโปรแกรมสามารถทำการปรับได้ 4 ขั้นตอน ทั้งอุณหภูมิและระยะเวลาในการทดสอบ รวมทั้งสามารถตั้งระยะเวลาการลดอุณหภูมิลงได้ (7)
- 8. Time: ช่วง 0-999 นาที ใช้ในการปรับระยะเวลาการให้ความร้อน (8)
- 9. Step : ขั้นตอนในการทดสอบ (9)
- 10. Increase/ Decrease value: สำหรับเพิ่มและลดการตั้งค่า (10)
- 11. Enter: ยืนยันการตั้งค่า (11)
- 12. Lift up/ down : สำหรับเลื่อนแร็ค (Rack) ขึ้นและลง (12)
- 3.8 การตั้งค่าพารามิเตอร์

- 3.8.6 กดปุ่ม (9) หน้าแสดง Step 2 ตั้งค่าอุณหภูมิและเวลา ตามวิธีการทดสอบ
 ทำเหมือนข้อที่ 3.7.4 3.7.5
- 3.8.7 กดปุ่ม (9) หน้าแสดง Step 3 ลดอุณหภูมิของเตาหลุม ตั้งอุณหภูมิ

ประมาณ 30 [°]C ทำเหมือนข้อที่ 3.7.4

- 3.8.8 กดปุ่ม (9) **ระคา** หน้าแสดง Cool เพื่อตั้งค่าเวลา 20 นาที ทำเหมือนข้อที่ 3.7.4
- 3.8.9 กดปุ่ม (4) โร้มกระบวนการย่อย หน้าจอแสดงการทำงาน
 และแสดงไฟสีส้มที่ปุ่ม (2)
 HEAT หรือกดปุ่ม (5) เพื่อหยุด
 กระบวนการย่อย
- 3.8.10 กระบวนการย่อยเสร็จสมบูรณ์ จะได้เป็นสารละลายสีเขียวใส สามารถกดปุ่ม (5)

หรือรอจนกระทั่งครบระยะเวลาย่อยให้เลื่อนลิฟต์ขึ้น โดยกดปุ่ม (12)

- 3.8.11 รอจนกระทั่งสารละลายตัวอย่างเย็นที่อุณหภูมิห้อง
- 3.8.12 ปิดสวิซต์เครื่องย่อย และเครื่องดักจับไอกรด
- 3.8.13 เปิดฝาครอบเครื่องย่อย แล้วนำถาดรองวางด้านล่าง ป้องกันสารเคมีหกลงบนเครื่อง
- 3.8.14 นำหลอดตัวอย่างเข้าเครื่องกลั่นในโตรเจน

ภาพที่ 18 หน้าจอการตั้งค่าพารามิเตอร์

4. ขั้นตอนการทำความสะอาดเครื่องย่อย

- 4.1 นำถาดรองวางด้านล่างออก
- 4.2 ใช้มือจับบริเวณที่จับทั้ง 2 ข้างของฝาครอบ Rack ดึงฝาครอบออก
- 4.3 ทำความสะอาดด้วยความระมัดระวัง
- 4.4 จัดวางฝาครอบในตำแหน่งเดิมและนำถาดรองด้านล่าง ป้องกันน้ำหกบนเตาหลุม

6. การดูแลรักษาเครื่องมือ

- การทำความสะอาดตัวเครื่อง
 ใช้ผ้าชุบน้ำหมาดๆ เช็ดทำความสะอาดตัวเครื่อง และ interface อาจใช้ผ้าชุบ
 Ethanol เช็ดทำความสะอาดตัวเครื่องได้
- การทำความสะอาดถาดรอง
 เลื่อนถาดรองทำความสะอาดทุกครั้งหลังจากใช้งานเสร็จ

ภาพที่ 19 การทำความสะอาดถาดรอง

3. การเช็คอะไหล่ และข้อต่อต่างๆ มีการขยาดตัว หรือมีน้ำรั่วซึม หรือไม่

ภาพที่ 20 การเช็คอะไหล่ และข้อต่อต่างๆ

4. Calibrate pump

Calibrate pump น้ำ ด่าง และบอริค 2 เดือนต่อครั้ง

Manual control > Pump Calibration > H20, NaOH, Boric

5. Rinsing a pump

เมื่อไม่ได้ใช้เครื่องทุกวัน ให้ไล่สายด่าง แทนที่ด้วยน้ำกลั่น เพื่อป้องกันการเกิดตะกอน ด่างอุดตันปั้มเสื่อมสภาพ

ประวัติผู้เขียน

ชื่อ	นางสาวฤทัยทิพ อโนมุณี
ที่อยู่	99 หมู่ที่ 4 ตำบลควนโพธิ์ อำเภอเมืองสตูล จังหวัดสตูล 91140
โทรศัพท์	094-5805195
อีเมล์	ruethithip.an@skru.ac.th
ประวัติการศึกษา	วิทยาศาสตรบัณฑิต สาขาเคมี มหาวิทยาลัยราชภัฏสงขลา
	การศึกษามหาบัณฑิต สาขาวิชาเคมี มหาวิทยาลัยทักษิณ
ประสบการณ์การทำงาน	พ.ศ. 2553-2563
	ตำแหน่ง : นักวิทยาศาสตร์ชำนาญการ
	หน่วยงาน : งานศูนย์เครื่องมือกลาง มหาวิทยาลัยราชภัฏสงขลา
	พ.ศ. 2563-ปัจจุบัน
	ตำแหน่ง : นักวิทยาศาสตร์ชำนาญการ
	หน่วยงาน : คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏสงขลา